Implementation of a geopositioning system with radio frequency transmission of coordinates

Keywords: Geolocation, Radiofrequency, Strategic Intelligence

Abstract

The implementation of geolocation systems has been booming in the last decade, under the premise of being able to control and provide security in the movement of vehicles or people in the development of different activities. However, the different devices available for such functions have been partially marketed to interact in the field with the use of mobile communications networks or, failing that, independent global positioning devices, with satellite communication for display on digital platforms. These systems generate certain limitations, both in size and energy consumption, due to the devices designed for use in general applications. For this reason, a technological study of the different geopositioning devices was carried out, taking into account size, energy consumption and sending information by radio frequency.  In this way, a system was designed and implemented with a remote node for use in military strategic intelligence, for displacements in areas without coverage of mobile communications networks. And a base station in charge of receiving information and sending it to a satellite visualization platform. As a result, a remote module of small dimensions was obtained, which remains in an idle state to save energy and is only activated when it receives a command from the base module, having a link range of more than twenty kilometers, as long as line of sight is ensured. 

The advantage of having a programmable device in the remote node is to be able to control variables that cannot be managed in other similar devices, such as: energy saving, data transmission times and own coding for transmission security, thus becoming a more reliable system for use in military operations.

Downloads

Download data is not yet available.

Author Biographies

Álvaro Andrés Guzmán Castañeda, Universidad Piloto de Colombia

Ingeniero de Telecomunicaciones, Universidad Piloto, Colombia.

Juan Wilfredo Pinto Uribe , Universidad Industrial de Santander

Ingeniero electrónico, Universidad Industrial de Santander, Colombia.

Diego Arley Velosa Castañeda, Universidad Distrital Francisco José de Caldas

Ingeniero en Control, Universidad Distrital Francisco José de Caldas, Colombia.

How to Cite
Guzmán Castañeda, Álvaro A., Pinto Uribe , J. W. ., & Velosa Castañeda, D. A. . (2021). Implementation of a geopositioning system with radio frequency transmission of coordinates. Perspectives in Intelligence Journal, 12(21), 275–291. https://doi.org/10.47961/2145194X.227

References

Bécares, J., Beneharo, R., Arcos, P., & Ruiz, A. (s.f.). Técnicas de marcaje de aves marinas para el seguimiento remoto. Revista de anillamiento, 25, 26(10), pp.29-40.

Camargo, J., González, L., Segura, D., Garay, F., & Rincón, N. (2017). Orientación de pasajeros con discapacidad visual dentro del Sistema de Transporte Masivo Transmilenio, mediante Geolocalización Satelital. Ingeniería, 22(2), 283-297. https://doi.org/10.14483/udistrital.jour.reving.2017.2.a08

Chaves Guerrero, L. M. Jurado Vásquez, H. (2019). E Chaves Guerrero, L. M., & Jurado Vásquez, H. (2019). El ciberespacio, fuente de control y vigilancia para los ciudadanos. Revista Perspectivas en Inteligencia, 11(20), 347-357. https://doi.org/10.47961/2145194X.39.

Cohen, A. E., Jiang, G. G., Heide, D. A., Pellegrini, V., & Suri, N. (s.f.). Radio Frequency IoT Sensors in Military Operations in a Smart City.

Cordis. Resultado de la investigación de la UE. (s.f.). Una nueva generación de balizas de socorro con funciones de búsqueda y salvamento basadas en los satélites de Galileo.

Cordis. Comisión Europea. https://cordis.europa.eu/article/id/125182nextgeneration-distress-beacons-will-use-galileo-satellitebased-search-andrescue-capability/es

Corzo, G. D., & Álvarez-Aros, E. L. (2020). Estrategias de competitividad tecnológica en la conectividad móvil y las comunicaciones de la industria 4.0 en Latinoamérica. Información Tecnológica, 31(6), 183-192. https://doi.org/10.4067/S0718-07642020000600183

Fourniol, M., Gies, V., Barchasz, V., Kussener, E., & Glotin, H. (2018). Applications of an Ultra-Low-Power Analog Wake-up Detector for Environmental IoT Networks and Military Smart Dust. https://doi.org/10.1109/IOTAIS.2018.8600893

Gazpio, A. M. (06, 06 2018). GNSS y Aumentación pasado, presente y futuro. Estudios de Vigilancia y Prospectiva Tecnológica en el área de Defensa y Seguri. Retrieved 08 06, 2021, from http://www.cefadigital.edu.ar/bitstream/1847939/1609/1/TEC1000%202018%20GNSS%20y%20Aumentaci%C3%B3n%20%20Pasado%20presente%20y%20futuro.pdf

Globalstar, Inc. (2015, 02 10). Spot Trace. SPOT. https://www.findmespot.com/es-la/products-services/spot-trace

Gotarane, V., & Raskar, S. (2019). IoT Practices in Military Applications. https://doi.org/10.1109/ICOEI.2019.8862559

Jalaian, B., Gregory, T., Niranjan, S., Russell, S., Sadler, L., & Lee, M. (2018). Evaluating LoRaWAN-based IoT Devices for the Tactical Military Environment. https://doi.org/10.1109/WF-IoT.2018.8355225

Olivera, O. F., Cuervo, J. A., & Giraldo Ramos, F. N. (2011). Sistema de control de posición angular aplicado a dispositivos RF. Visión electrónica, 5(2), 42-58. https://doi.org/10.14483/22484728.3569

Rafael Alejandro, M. S. (2020). Introducción de las tecnologías de localización y los sistemas de geoposicionamiento en el desarrollo de proyectos de internet de las cosas. In Memorias del Programa de Redes-I3CE de calidad, innovación e investigación en docencia universitaria (p. 8). Universitat d'Alacant. Institut de Ciències de l'Educació. https://rua.ua.es/dspace/bitstream/10045/112408/1/MemoriesXarxes-I3CE-2019-20_174.pdf

Roman, J. et al. Sistema de posicionamiento en interiores utilizando señales de radio estaciones FM comerciales y Deep Learning. Revista Iberoamericana de Automática e Informática industrial, [S.l.], v. 17, n. 1, p. 34-43, ene. 2020. ISSN 1697-7920. Disponible en: <https://polipapers.upv.es/index.php/RIAI/article/view/10894>. https://doi.org/10.4995/riai.2019.10894

V. Pellegrini, Fabio Principe, Rodolfo Guidi, Gabriele Scozza, Giacomo de Mauro, & Riccardo Cioni. (2018). Adding PHY-Layer Crypto to COFDM Radios through a Large Array with Directional Modulation. Globecom., 1(Globecom.), 6. https://doi.org/10.1109/GLOCOM.2018.8647271

V. Pellegrini, F. Principe, G. Demauro, R. Guidi, V. Martorelli, & R. Cioni. (2014, May 4-9). Cryptographically Secure Radios Based on Directional Modulation. IEEE ICASSP, 1(Florencia, Italia), 6. https://doi.org/10.1109/ICASSP.2014.6855192

Wang, J., Cao, L., Shen, Y., & Zheng, G. (2018). Research on Design of Military Logistics Support System based on IoT. https://doi.org/10.1109/PHM-Chongqing.2018.00148

Published
2021-10-22
Section
Technology and development